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the axis of the objective, at a distance of about 10 cm 
from the object. The exposure was about 8 seconds. 
The image reconstruction was obtained through an 
eyepiece 10 x ,  0.4 N.A. The ratio between the inten- 
sities of the two beams does not seem to be critical 
but there are some differences in the details using the 
reference beam stronger or weaker than the reflected 
beam. The reference beam was constant in intensity 
and the relative intensities were varied by rotating a 
polaroid on the beam entering the Opakilluminator. 

An enlargement of the hologram is shown in Fig. 2. 
A photograph of the image reconstructed from Fig.2 
through the eyepiece is shown in Fig. 3. The actual 
enlargement of the apparatus with the lenses used 
is 100x.  On the photograph the total enlargement 
is about 150x.  The subject is a point-bottomed 
trigon. Also in Fig.2 it is possible to recog- 
nize broadly the shape of the trigon since the reference 
beam was weaker than the light reflected from the 
diamond. Fig. 4 is the same trigon reconstructed from 
another hologram, whose reference beam was stronger 
and with an inclination slightly different to the axis 
of the objective. 

We have applied this method also to the inspection 
of metallic surfaces. Fig. 5 is the microscopic recon- 
structed image by holography of a part of the number 
7 of the date 1967 in relief on an Italian 50 lire coin; 
the actual enlargement on the photograph is in this 
case 120 x .  

By this method some microscopical details may be 
enhanced in respect to the classical optical methods. 
If the slope of the surface labelled with two asterisks 
in Fig. 3 is examined by phase contrast microscopy and 
interferometry, its stepped nature can be detected, but 
hardly any information is obtained regarding the fine 
irregularities of the edges of the steps and they seem 
to be almost rectilinear. By the method of reconstruct- 
ing the image one can detect in addition that in the 
area with the asterisks the edges are a little waved. 
The wall of the trigon is also waved, as one can see 
in the region marked with an arrow in the reconstructed 
image of Fig. 4, and the edges of the trigon are repre- 
sented by broken lines since they are stepped. The 
results are satisfying even at this early stage of the 
work and we think it is possible to improve the method. 

We both wish to thank Professor Malvano and 
Professor Sanero for their interest in this work. 
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The Debye-Waller Factor for Small Cubes and Thin Films 
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The dependence of the Debye-Waller factor on the size of cubes and plates is calculated by assuming 
the Debye theory, but using the frequency distribution which incorporates a term that is proportional 
to the surface area. The ratio of B for small particles to B for large particles is less than 0"01 for cubes 
with 109 atoms or more and for plates which are more than 330 atoms thick. The inclusion or exclusion 
of the zero point energy terms has a large influence on the size correction which has to be applied to 
small particles and thin films. 

Introduction 

Comparison of the Debye-Waller factors for small and 
large crystallites can give some information about the 
specific surface vibrations in small particles. However, 
before this can be obtained it is necessary to apply a 
size correction to the frequency distribution for volume 
vibrations. This correction is calculated here for small 
crystallites and thin films belonging to the cubic system, 
using the Debye theory. Although the Debye theory 
of lattice vibrations is a simplification which is justifi- 

able at low temperatures, experimental results are often 
expressed in terms of this theory because it leads to 
one single parameter, the Debye temperature, which 
is 'characteristic' of every material. 

Bolt (1939), Maa (1939) and Roe (1941) were first 
to show that the correct counting of the vibrational 
frequencies introduces surface and edge terms in the 
frequency distribution for a Debye solid. Later Mon- 
troll (1950) estimated that the size effect in specific heat 
measurements would become noticeable for non-metal- 
lic powders and thin films at 1 °K. Recently Marshall 
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& Wilenzick (1966) have drawn attention to a size cor- 
rection which has to be applied in MiSssbauer experi- 
ments with small particles. Thiel (1967) has published 
a critical discussion of the size effect. 

It will be shown here that the inclusion or exclusion 
of the zero point energy (z.p.e.) vibrations in the eval- 
uation of a particular diffraction experiment has a 
large influence on the size correction which has to be 
applied. It should be emphasized that specific surface 
or interface vibrations are not included in the correc- 
tion term calculated below. 

For a cubic crystal with N atoms of mass m in the 
crystal of volume V, surface area S and edge length 
L, the Debye-Waller factor exp ( - 2 B 2  -2 sin20), can 
be expressed in terms of the frequency distribution g(v) 
as follows: 

B =  3Nm" g ( v ) v  e x p ( h v / k T ) - i  + dv (1) 
all V'$ 

where 
g(v)dv= ( 4rcVv2 7rSv L ) . - - +  + dv 

In g(v) the term which is proportional to L is relatively 
small and will not be taken into account. The e ' s  are 
related to an average wave velocity Cm which is defined 
in terms of the longitudinal, cz, and transverse, ct, wave 
velocities by 

Cm = [½(ci-3 + 2c 73)]-1/3 . 

The relations are 

c ~-1 -- c/-3 + 2c7 a = 3Cm 3 

c71 - cF2 + 2cF2= 37c~ 2 
with 

7 = z}(1 + 2c~/c2t) [3/(1 + 2c~/c~)]z/3 . 

The factor ~ is nearly unity, being 0.973 for cdct= 1.5 
and 0.923 for cdct=2"5. 

It is customary and justified for large crystallites to 
take the limits of integration in (1) as zero and vD, 

I? with the largest frequency vD given by 3N= g (v) dv. 

In the present case the lower limit of zero in (1) leads 
to a divergent integral for the surface term. This diffi- 
culty can be overcome when it is realized that the 
integral is an approximation to a sum over all fre- 
quencies and that, except for the three degenerate 
modes at v= 0, there is a finite smallest frequency, vs, 
which depends on the dimensions of the crystal. The 
implications of the use of this integral with a non-zero 
lower limit have been discussed by Thiel (1967). 

Cubical crystallites 

The Debye frequency distribution can be derived for 
a cube assuming clamped surfaces or mixed boundary 
conditions (Sommerfeld, 1945). It does not apply to 
a finite body with force-free surfaces. Debye used the 

solution for a 'sufficiently' large force-free sphere, but 
had to obtain his frequency distribution from a high 
frequency approximation. For a cube with clamped 
surface the lowest frequency is vs =½era V -1/3 where the 
lowest wave velocity has been approximated by the 
average velocity era. The lowest velocity would be ct 
which is smaller than cm by factors 0.915 or 0.883 for 
cdct= 1.5 or 2.5 respectively. On the other hand vs 
would be somewhat larger for a cube with free surfaces, 
e.g. for a sphere it is larger by factors 2-95, 2.28 or 1.35 
depending on the mode of vibration (Love, 1944). In 
the following calculations vs = ½era V -1/3. 

The largest frequency, vr`, can be obtained from a 

Ii 'g(v)dv third-order equation which follows from = 3N. 

Neglecting the terms of the order of N -z/3, i.e. setting 
vs=O for the purpose of evaluating vz, vz becomes 
(Montroll, 1950): 

= [9Nc3~1/3 [ $7~ (9Nc3~ z/3 ] 
vr, \ 4~V  ] 1 36c2N \ 4rcV ] 

V L=Cm ( - ~ - ~  1 -  2fin (2) 

where the atomic volume Va, the average velocity cm 
and n = NU3 have been introduced. 

Equation (1) now becomes [using the temperatures 
Os=hvs/k, Or,=hvr,/k and 0~ °, the latter being the 
Debye temperature for large crystals (n ~ co, Os ~ 0)] 

B = A  x + d x +  - -  
o,/r exp ( x ) -  1 nOr, 

--1 IOLIT 1 

where 

(3) 

7b ) 3 6h 2 
A = 1 -  - ~  kmOL 

/ 3 ~  2/3 
b =~r \ ~ l  

(_~_) 1]3 1 
Os = O~ 2n 

c m h (  3 ) 1/3 
°~=--- U 

Except for A, which is temperature independent, (3) 
depends on OL/T, the crystal size n and ?, which can 
vary between 0.973 and 0.923. 

It is instructive to divide B into its components and 
to consider the ratio of the surface to volume com- 
ponents. Writing 

B/A = Bovol + Btvol + Bosurt + Btsurt 
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in obvious notation (the letters o and t referring to the 
zero-point-energy and thermal contributions respec- 
tively), this ratio becomes 

R = (Bosurt + Btsurt)/(Bovol + Btvol). 
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Fig. 1. K, which is the ratio of B for small cubes with n3 atoms 
to B for large cubes, is plotted against O~/Twhere 0 °~ L is 
the Debye temperature for large cubes. The zero point energy 
terms are included. 7=0.973 except for the broken line, 
which is for ? = 0.923. 
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Fig. 2. Same as Fig. 1 except that the zero point energy terms 
are excluded. 

The components and good approximations, taking 
y = 1, b = 1.2, 0L/0s = n and 7b/2n < 1, are as follows: 

Bovol = ¼(1 _ OjOLZ 2 ) ~_ ¼ 

Z 2 I °L/T X 
Btvol= .~- O0,/T -~P- (x ) - - i -dx  

1 7b -1 Os 
Bosurf= ~ - 7 b n - l ( 1  - -2n) ( 1 -  O--L) ~--0.6/n 

Ojc In 1-- exp ( -Os/T}  " 

At low temperatures R = Bosurt/Bovol ~- 2"4/n because 
the thermal terms tend to zero. At high temperatures 
R=Btsurr/Btvol~-l '2n-l lnn because now the z.p.e. 
terms which are temperature independent are relatively 
small. It is noteworthy that the relative surface con- 
tribution is larger at high than at low temperatures. 
This feature is due to the z.p.e, terms. 

If only the thermal contributions are considered the 
situation is different. The low temperature ratio, 
Btsurt/Btvol, is 1"2{1 - n  exp [ -  (OL-- Os)/T]} -1 ~- 1"2 and 
the high temperature ratio is about 1.2n -1 In n, as 
above. Now the low temperature ratio is considerably 
larger than the high temperature ratio. 

Diffraction data taken at two temperatures are 
usually evaluated by plotting the logarithm of the ratio 
of the intensities at these temperatures against 2 -2 sin:& 
The slope of this plot is a measure of the difference 
in the thermal components of B at the two tempera- 
tures. On the other hand, comparison of the theoretical 
and experimental atomic scattering factors allows the 
calculation of the total B. Therefore two ratios of B 
for small particles to B for large particles were com- 
puted by either including or excluding the z.p.e, terms. 
With the z.p.e, terms the ratio is 

BS(small particles) (1 - 7b ~ 2 
K =  BL(large particles) = _ 2-n] 

BSovol + BStvol + BSosurf + BStsurf + B' 
x BLovot + BLtvol , (4) 

where 
oo 

f? BLtvol = 0~,---- T exp ( x ) -  1 dx 

BLOvol = ¼ 

and B' is zero for cubes but it is required for thin 
films. Without z.p.e, terms K is the same as (4) except 
that BSovol=BSosua=BLovol=O. The results for K 
are given in Fig. 1 and Fig. 2. 

Thin monocrystalline films 

The neglect of the dispersion and anisotropy of the 
wave velocities and of the condition for force-free 
boundaries makes the application of the Debye theory 
quite risky. Nevertheless, in terms of a Debye solid, 

A C 24A. - 3* 
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the frequencies of the lattice waves travelling normal 
to the thin plate have a sizable lower bound, whilst 
those belonging to waves travelling along the plate 
approach zero more closely. An estimate of the lowest 
frequency of the waves travelling normal to a plate of 
thickness L~ is vs = ½cm/Lz. 

The characteristic properties of waves in plates are 
most noticeable for wavelengths that are long compared 
with the thickness of the plate. For an infinitely ex- 
tended free plate the wave velocities for the fundamen- 
tal branch can be described in terms of et and et which 
are the velocities in an infinite medium. Longitudinal 
waves of long wavelengths travel parallel to the plate 
with phase velocity 0.945 cz (for Poisson's r a t io=k ;  
Tolstoy & Usdin, 1953) and perpendicular to the plate 
with c~. Transverse waves with displacements normal 
to the plate (waves of flexure) propagate along the 
plate with a velocity which approaches zero for long 
wavelengths. Transverse waves with displacements in 
the plate travel with ct. The wave velocities in an infinite 
elastic plate which is welded to a semi-infinite elastic 
continuum are different from those in free plates (Tol- 
stoy & Usdin, 1953). The longitudinal wave of long 
wavelength now becomes a wave which travels along 
the plate with the velocity of Rayleigh waves in the 
substrate. Transverse waves of long wavelengths with 
displacements normal to the plate propagate along the 
plate with the shear velocity of the substrate. It is 
obvious that a 'soft' film on a 'hard'  substrate would 
have to be treated differently from the reverse case. 

Using the Debye theory for a quadratic thin plate 
with surface area S = 2L z + 4qL 2 ~_ 2L z (q ~ 1) and hav- 
ing NxNuN, (Nx=Nu=N, /q )  atoms in the volume 
V = q L  3, the expression for vz [equation (2)] and B 
[equation (3)] have to be modified as follows. Every- 
where n has to be replaced by 3Nz except in the equa- 
tion for 0s. The modification for 08 depends on the 
choice for vs. Using one single lower cut-off vs for all 
modes irrespective of their directions of propagation 
is obviously wrong, because for waves travelling nor- 
mal to the plate the lowest frequency is vs =½em/qL, 
and for waves travelling in the plate it is v8 =½cm/L. 
By using the larger vs a fraction of about N~ -3 of low 
frequency modes is not included in the integrals in (3). 

The question of what to take for the lower limit v8 
was approached in two ways. Firstly, vs = ½cm/qL was 
taken in all expressions and the remaining modes be- 
tween 0 and vs were summed individually by assuming 
q =  10 -3. In this case n in the expression for 0s has to 
be replaced by Nz, and the additional term 

B , _  
9hN __[1 1 

N X 
exp (hv t / kT) -  1 remaining V l 

modes 

1 

has to be included in (4). Secondly, the same vs was 
used for the surface terms BSosurf and BStsurf, but not 
for the volume terms BSovol and BStvol which were 

integrated from zero. For the surface terms the re- 
maining modes between 0 and v8 were again summed 
individually assuming q =  10 -3, the sum being ½B'. For 
both cases the ratio, K, of B for thin films to B for 
infinitely thick films was calculated by either including 
or excluding the z.p.e, terms. 

In Fig. 3, which shows K for plates with z.p.e, terms, 
the full lines refer to the first choice for vs and the 
broken lines to the second, as discussed above. The 
curves for K without z.p.e, terms are similar to those 
for cubes (Fig. 2) but are not reproduced here because 
the mixing of integration and summation in (4) leads 
to numerical uncertainties. These errors are particu- 
larly large for K without z.p.e, at low temperatures 
because K is the ratio of two quantities which indi- 
vidually approach zero as the temperature decreases. 

Discussion 

When the z.p.e, terms are included in the size correc- 
tion the curves in Fig. 1 show that the correction is less 
than 1% for cubical particles of N =  10 9 atoms or more. 
For smaller particles the correction can become quite 
large and never vanishes at any temperature. At low 
temperatures the correction is determined by the ratio 
of the z.p.e, terms which is smaller than the ratio of 
the thermal terms at high temperatures. The size cor- 
rection is, therefore, decreasing with decreasing tem- 
perature. 
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Fig. 3. K for quadratic plates with a thickness of Nz atoms. 
The zero point energy terms are included. Broken and full 
lines refer to different summing of the low frequency modes as 
described in the text. 
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The size correction without the z.p.e, terms is shown 
in Fig. 2. The curves in Fig. 1 and Fig. 2 coincide at high 
temperatures because the z.p.e, terms are relatively un- 
important. As the temperature decreases the correction 
without z.p.e, terms (Fig.2) increases, because the 
thermal contribution of the surface terms increases 
relative to the volume terms. This follows from the 
frequency distribution g(v) in which the volume term 
is proportional to v z and the surface term proportional 
to v. On further lowering of the temperature the cor- 
rection falls to zero since at these very low tempera- 
tures long wavelength modes which are possible in the 
large particles cannot exist in the small particle. 

The influence of ~ on the resulting curves is small. 
This is seen from Fig. 1, where the broken line is for 
7=0.923 whilst the other lines are for ~=0.973. In the 
other Figures 7 =0.973. 

For thin films the thickness correction is qualitatively 
similar to that for cubical particles as may be seen 
from Fig. 3. These curves include the B' terms which 
are the contributions of the low frequency modes omit- 
ted in the integrals. Because B' has been calculated 
with a thickness to length ratio of 10 -3, the curves are 
not as general as those for cubes. In particular this 
is the case for Nz= 10 and 33.3. For the thicker films 
the influence of B' is small. 

As expected, the correction for films is smaller than 
that for cubes with an edge length equal to the film 
thickness. At high temperatures it is somewhat larger 
than ½ of that for cubes. The correction without z.p.e. 
terms for films is uncertain for low temperatures. At  
high temperatures it is the same as that which includes 
the z.p.e, terms. As the temperature decreases it first 
increases and then decreases in a manner which is 
qualitatively similar to that for cubes. 

The author would like to thank Dr L. A. Vermeulen 
for frequent discussions and for reading the manu- 
script. 
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The Resolution Function in Neutron Diffraetometry. III. Experimental Determination 
and Properties of the 'Elastic Two-Crystal' Resolution Function* 
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AND R. NATHANS 

Brookhaven National Laboratory, Upton, N.Y.  11973, U.S.A. 

(Received 6 June 1968) 

The experimental determination of the resolution function of a two-crystal neutron diffractometer is 
discussed. The form of the Bragg reflexion profiles observed for a perfect crystal using conventional 
scanning modes is considered in detail and their application to the measurement of diffuse elastic 
scattering is discussed. 

1. Introduction 

In earlier papers we have discussed the derivations of 
the resolution function for a three-crystal neutron dif- 
fractometer (paper I; Cooper & Nathans, 1967) and 
for a two-crystal neutron diffractometer for elastic scat- 

* Work performed in part under the auspices of the U.S. 
Atomic Energy Commission. 

? Formerly Research Associate, Brookhaven National Labor- 
atory, Upton, N.Y, U.S.A. 

tering (paper II; Cooper & Nathans, 1968) in terms 
of a matrix notation involving the parameters of the 
system. 

Although the matrix formulation is convenient for 
calculating the resolution function for a particular set 
of Gaussian instrumental parameters, it does not give 
us any direct or simple indication of the form of the 
dependence of the resolution function on the various 
parameters, and the extraction of this information from 
the matrix elements becomes complex. In addition it 
does not give us a clear indication of how well we can 


